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Abstract
It is shown that a magnetic field satisfying the mean-field magnetohydrody-
namics equation with zero mean velocity and without energy input from the
outside possesses a Lyapunov function, which is a combination of the magnetic
energy and the helicity. As a consequence, if the mean magnetic field remains
uniformly bounded for all time, the field tends asymptotically in time to an
attractor formed by force-free states.

PACS number: 47.65.+a

1. Introduction

Under the magnetohydrodynamic approximation, the magnetic field B in an incompressible
plasma of velocity u, viscosity v, resistivity η and kinetic pressure p satisfies in the absence
of forcing the equations

∂u

∂t
= ν�u − u · ∇u + J × B − ∇p

∂B

∂t
= η�B + ∇ × (u × B)

∇ · u = ∇ · B = 0

(1)

where J = ∇ × B is the current density.
With the usual homogeneous boundary conditions in the domain
, which imply no input

of energy from the outside, the energy E of any trajectory t → (u(t),B(t)) is decreasing in
time:

E(t) = 1
2

∫



u(t)2 + B(t)2 dV

Ė(t) = −
∫



νω(t)2 + ηJ (t)2 dV
(2)
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where ω = ∇ × u indicates the vorticity of the flow. This implies that both velocity and
magnetic field will eventually decay to zero. Another important function is the magnetic
helicity,

H = 1
2

∫



A · B dV (3)

where A is a vector potential for B (∇ × A = B). This is invariant for ideal plasmas
(v = η = 0). In general, however,

Ḣ = −η
∫



J · B dV. (4)

In principle there is no mathematical reason why H should decay more slowly than E.
However, there are good physical arguments to believe that this is the case in MHD turbulence
(see e.g. [1] and references therein). If we take H as constant (which it is not, although as
asserted it is likely to vary more slowly than the energy) and minimizeE under this constraint,
one finds a force-free state

J = µB. (5)

In fact the assumed quasi-invariance of H is the main example of an inverse cascade in
three-dimensional MHD, and the appearance of large-scale features in the magnetic field is
a consequence of it. We intend to provide a partial analogue of (5) for the mean-field MHD
equation. This is one of the main tools in the study of astrophysical turbulent plasmas. The
equation is as follows:

∂B̄

∂t
= ∇ × (−(η + β)∇ × B̄ + ū × B̄ + αB̄

)
. (6)

Here ū and B̄ are means of the velocity and the magnetic field, β a turbulent diffusivity
and α an important term representing the possible enhancement of the field by fluctuating
small-scale motions. For the classic derivation of this equation, see [2]; for the first-order
smoothing approach, [3]; for an excellent critical study of it, [4]. Mathematical questions
related to it appear in [5]. Applications of this equation to specific astrophysical dynamo
models are countless, and many of them rather successful. This fact gives credibility to (6)
and makes it worthwhile to undertake a study of possible Lyapunov functions for its associated
trajectories, in order to ascertain where such trajectories are likely to end, i.e. to study the
long-term asymptotics of mean fields satisfying (6). Such a study would depend heavily on
the behaviour of ū, which, in contrast to the full MHD system (1), must be taken as a datum.
Strictly speaking (6) is a refinement of the induction equation for the magnetic field and not of
the full system. The induction equation, by itself, has no Lyapunov function unless the velocity
is zero, where it reduces to a simple diffusion equation. Here the situation is different: we
may assume that the mean velocity is zero (or constant, so that it would vanish after a Galilean
change of variables) and the alpha term, incorporating the effect of fluctuating velocities, may
still enhance the field to prevent decay. Hence we assume ū = 0; from now on we will drop
the bar in B̄. As for the α and β terms, their expressions are not clear a priori, but, since
turbulence is suppressed by large mean magnetic fields, they certainly must decay with the
size of B (alpha-quenching). An expression for them [6] is

α = α0f

1 + kB2

β = β0f

1 + kB2

(7)
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where f is a point function (a multiple of the cosinus of the latitude angle for axisymmetric
problems), and k a positive constant. The usual situation is that the turbulence adds to the
diffusivity, i.e. that β is positive. Hence we will assume that f is positive and β0 > 0. We will
take α0 > 0; if α0 < 0, the same results hold by using instead the opposite Lyapunov function.
The size of k determines the effect of the alpha and beta terms for larger fields. There is some
controversy about it [7,8] but this will not affect our study. Finally, since β is much larger than
η for moderate-sized turbulent fields, which are the ones we wish to analyse, we will drop the
term in η from equation (6).

Our main conclusions will be as follows: for boundary conditions for which there is no
input of Lorentz force from the outside, there exists a Lyapunov function L which makes
the states with minimal L force-free ones. However, the constant µ of (5) must now be
precisely α0/β0, which imposes additional constraints upon them. Also, it is not clear that
any trajectory should tend to any of these states (as is often assumed), but we prove that the
set of these force-free fields is an attractor for any trajectory where the magnetic field remains
uniformly bounded.

2. The Lyapunov function

In addition to equation (6), the magnetic field must satisfy some initial and boundary conditions.
These determine the space of functions where we work; all of them are subspaces of the set of
square-integrable functions L2(
). Thus, for periodic conditions, we set 
 = [0, 1]3, and

H =
{
B ∈ L2(
)3/∇ · B = 0, B · n|∂
 periodic,

∫



B dV = 0
}
. (8)

The condition ∇ ·B = 0 must be understood in the sense of distributions. For these solenoidal
fields the trace B · n makes sense at the boundaries. For other cases, one simply sets

H = {B ∈ L2(
)3/∇ · B = 0, B · n|∂
 = 0}. (9)

We could choose additional boundary conditions, such as Dirichlet ones (B|∂
 = 0), or
perfect conductor ones (J × n |∂
= 0), but it is simpler to remain within H and impose the
necessary conditions upon every trajectory. With such generality we cannot prove results of
existence and regularity for all time. Therefore we simply assume that the solution to (6) with
an initial condition B(0) = B0 exists for all time, and is smooth enough for the current density
J = ∇ × B to be square integrable in the domain 
.

Our next hypothesis is that there are no inputs of energy from the outside of the domain.
We will see that this condition means that the inequality∫

∂


β(J × B) · n dσ � 0 (10)

holds for all time. Although it would be conceptually simpler to assume that there is no
exchange of energy (i.e. that the inequality (10) is an equality) we will try to be as general as
possible. Also, it makes sense that if one allows magnetic energy to flow into the domain one
may obtain any evolution one wishes, whereas by allowing energy only to escape the system
is left to its own resources and the study of its limit states is possible. Notice that this integral
vanishes for the periodic case (because the integrand itself is periodic, and n has opposite
signs on opposite sides of the box), for Dirichlet conditions and for the perfect conductor case.
Analogously to (2), the magnetic energy is defined by

E = 1
2

∫



B2 dV (11)
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and the magnetic helicity is defined by (3). Note that if we assume that the domain
 is simply
connected, any two vector potentials for B differ in a gradient, ∇�. Since always∫




B · ∇� dV =
∫
∂


�B · n dσ = 0 (12)

the election of A does not affect the value of H . We choose therefore A with A × n|∂
 = 0,
an election which satisfies a bound of the type

‖A‖2 � M‖B‖2 (13)

for some constantM depending on 
 [9]. Therefore

|H | � 1
2M‖B‖2

2 = ME. (14)

Consider the evolution of the magnetic energy of a trajectory B(t). We have

Ė =
∫



B · Ḃ dV =
∫



B · ∇ × (−βJ + αB) dV

= −
∫



∇ · (B × (−βJ + αB)) dV +
∫



(−βJ + αB) · J dV

= −
∫
∂


β(J × B) · n dσ +
∫



−βJ 2 + αB · J dV

�
∫



−βJ 2 + αB · J dV. (15)

As for the evolution of the magnetic helicity H(t), one obtains

Ḣ = 1
2

∫



Ȧ · B + A · Ḃ dV. (16)

Now, since 
 is simply connected, A satisfies the ‘uncurled’ equation

∂A

∂t
= −βJ + αB + ∇ (17)

for some time-dependent potential  . Since∫



B · ∇ dV = 0

we are left with

Ḣ = 1
2

∫



−βJ · B + αB2 + A · ∇ × (−βJ + αB) dV

= 1
2

∫



−βJ · B + αB2 − ∇ · (A × (−βJ + αB)) + B · (−βJ + αB) dV

=
∫



−βJ · B + αB2 dV − 1
2

∫
∂


(A × (−βJ + αB)) · n dσ. (18)

Since A × n = 0 at ∂
, the boundary integral vanishes. Let λ = β/α = β0/α0. Then

(λE −H)˙ �
∫



−αλ2J 2 + 2αλB · J − αB2 dV = −
∫



α|λJ − B|2 dV. (19)

Since α > 0, λE −H decreases in time. It may only become stationary if λJ = B, in which
case obviously Ḃ(t) = 0 and the trajectory itself is stationary. To be precise, the identity
above should hold almost everywhere (i.e. in H). We will see in the next section that any such
force-free state is necessarily smooth and therefore the identity holds everywhere.
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Notice that, in general, the system is in equilibrium if −βJ +αB = ∇� for some potential
�. If moreover B satisfies our boundary conditions, (λE −H)˙ = 0 and necessarily

0 � −
∫



α|λJ − B|2 dV = −
∫



1

α
|∇�|2 dV � 0.

The only possibility is therefore ∇� = 0, i.e. λJ = B.
Thus λE − H is a Lyapunov function for our trajectory. It always decreases unless

λJ = B, which is a very particular force-free state: the constant of proportionality must
be precisely the ratio between α and β. How likely is this? Notice that in this case, also
λ∇ × J = −λ�B = (1/λ)B. Hence −�B = (1/λ2)B. If B satisfies one of the classical
boundary conditions defined before, which make the Laplacian an elliptic, dissipative operator
with a sequence of eigenvalues tending to −∞, −1/λ2 should be one of them. For the ratio
(β/α)2, which is an a priori quantity, to coincide with one of a discrete set of parameters
characteristic of the domain 
 seems rather unlikely, although it may happen [6]. It is for
precisely this reason that we have chosen the most general condition (10), which does not
determine the spectrum of � and therefore could allow a continuum of solutions.

If we know a priori that the energy of the trajectory remains bounded, E � C, as we
will assume in the next section, by (14) |λE − H | � (λ +M)C, and the Lyapunov function
is bounded. This demands (λE − H)˙ → 0 as t → ∞, and λE − H decreases to a certain
real value. This does not need to imply that B(t) tends to a particular force-free state, because
these are not isolated points in the phase space. In fact they form a linear space (with any of
the above boundary conditions, a finite-dimensional one). Many authors tend to think that a
system tends to relax to a single minimum energy (or minimum Lyapunov function) state [10],
but this is something that must be proved in every case.

3. Force-free states as attractors

In this section we will make use of some theorems and notations of functional analysis,
concerning the Sobolev space H 1(
) of functions whose differential is square integrable
and the fact that any ball in a Hilbert space is weakly compact. We will use the fact [9] that
H 1(
)3 coincides with the space of functions w ofL2(
)3 such that both ∇ ×w and ∇ ·w are
square integrable, and w ·n lies within a certain spaceH 1/2(∂
) of functions at the boundary.
In our case, this means that any function B within H such that its curl is square integrable lies
within H 1(
)3, and its H 1-norm

‖B‖2
H 1 = ‖B‖2

2 + ‖∇B‖2
2

is equivalent to the L2-norm of the current,

‖J‖2
2 =

∫



|∇ × B|2 dV.

We intend to prove that the set A = {B ∈ H : λJ = B} of force-free states attracts every
trajectory within H which remains uniformly bounded for all time.

First let us look at the set A. Although in principle the value of J = ∇ × B must be
understood in the sense of distributions, if λJ = B then J ∈ H. As stated before, this implies
B ∈ H 1(
)3 ∩ H. Since J ∈ H and λ∇ × J = J , J itself belongs to H 1(
)3 ∩ H. This
shows that B ∈ H 2(
)3 ∩ H [9], whereH 2 is the space of square-integrable functions whose
differential belongs toH 1. We may iterate this process and find that any B ∈ A is indefinitely
differentiable.

However, for our purposes it is sufficient to know A ⊂ H 1(
)3. Since the embedding
H 1(
)3 → L2(
)3 is compact, and for B ∈ A we have ‖J‖2 � (1/λ)‖B‖2, we find that
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for any closed ball B̄(0, R) in H the set A ∩ B̄(0, R) is compact in H, i.e. every bounded set
within A is relatively compact.

Now let t → B(t) be any trajectory bounded for all time. We intend to prove that its
ω-limit is contained within A. Were it not so, there would be a sequence tn → ∞ and some
r > 0 such that for all n the distance within the space H

d(B(tn),A) � r. (20)

Since ‖B(tn)‖∞ is bounded, so is ‖B‖2; as stated in the previous section, the function λE−H
is bounded for all time for this trajectory, tends to some value when t → ∞ and (λE−H)˙(t)
tends to zero. In particular, from some time t0 on,

(λE −H)˙ =
∫



α|λJ − B|2 dV � 1. (21)

Since (say) ‖B(t)‖∞ � N , α � α0/(1 + kN2). (This is the only time where the hypothesis of
the uniform boundedness of B(t) is used.) This means that for t � t0,

‖J(t)‖2 � 1

λ
‖B(t)‖2 +

1

λ

(
1 + kN2

α0

)1
2

. (22)

Thus the set {J(t) : t � t0} is bounded inL2(
); as stated above, this means that {B(t) : t � t0}
is bounded in H 1(
)3 ∩ H, and therefore relatively compact in H. We now use the fact that
any closed ball in H 1(
)3 ∩ H (or in H) is compact and metrizable with the weak topology:
i.e. there exist J0 ∈ H, B0 ∈ H 1(
)3 ∩ H and a subsequence of (tn), denoted again by (tn),
such that ∫




(J(tn)− J0)Φ dV → 0 ∀Φ ∈ H
∫



(B(tn)− B0)Φ dV → 0 ∀Φ ∈ H.
(23)

As a matter of fact we could take a wider class of � for the second convergence, but this is
unnecessary. Since the set {B(t) : t � t0} is relatively compact in H, we may assume that
B(tn) → B0 also in the topology of H.

We must prove that B0 ∈ A. Since ‖λJ(tn)−B(tn)‖2 → 0, there exists a subsequence of
the integrand converging to zero almost everywhere. The same may be said of the convergence
B(tn) → B0. For this subsequence (again denoted by (tn)), J(tn)must tend almost everywhere
to some function J1. By using the convergence theorems and (25), we find that J0 = J1 a.e.,
so λJ0 = B0 in H. By our previous argument, B0 ∈ A and it is a smooth field. Hence we have
found a subsequence of the original one tending to an element of A, which contradicts (22).

It is difficult to provide a physically relevant case where the precise situation described
above occurs in all certainty. However, in [11] a model of isotropic helical turbulent magnetic
field where α and β satisfy a relation of proportionality such as (7) is presented. The resulting
numerical evolution produces nearly force-free states. Although apparently the field with any
initial condition tends to one of these states, very small variations of these initial conditions
yield a different limit. Given the inherent difficulties of long-term numerical evolution, this
behaviour could indicate that the magnetic field tends to a robust attractor formed by force-free
states, as described in our result. Attraction to a single state does not appear to be robust.

4. Conclusions

A magnetic field satisfying the mean-field magnetohydrodynamics equation with zero mean
velocity, and whose alpha and beta terms are proportional, under rather general boundary
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conditions possesses a Lyapunov function which is a combination of the magnetic energy and
helicity. This function is strictly decreasing for any non-stationary trajectory, and its only
equilibrium points are certain force-free fields. While it is not clear that any trajectory should
tend to any of these steady states, the set of them is an attractor for any uniformly bounded
trajectory.
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